Event Calendar
Prev MonthPrev Month Next MonthNext Month
USACM Nanotechnology Virtual Seminar
Wednesday, May 25, 2022, 2:00 PM - 3:00 PM CDT
Category: Events

USACM Nanotechnology Virtual Seminar

Enhancing Physics-Based Modeling and Extracting Physical Insight from Data Using Machine Learning


Alejandro Strachan, Purdue University





The synergy between principles-based modeling and data science is playing an increasingly important role in materials science and engineering. In addition, there is significant interest in using machine learning (ML) tools to extract physical laws as well as symmetries and associated invariants from data. I will discuss recent progress in my group on machine learning applied to multiscale modeling and in the development of interpretable models that balance accuracy with parsimony.
ML for multiscale modeling. ML interatomic potentials have shown near quantum mechanical accuracy at a fraction of the cost, enabling large-scale atomistic simulations. We developed an iterative approach to address the challenge of generating training data and address the stochastic nature of NN training. I will demonstrate the approach with the development of neural network reactive force fields (NNRF) for energetic materials over a wide range of temperatures and pressures and the phase change material GeSbTe of interest in electronics. The next step of the multiscale ladder is coarse-graining atomistic simulations, and I will show how dimensionality reduction techniques like non-negative matrix factorization and autoencoders can extract physically interpretable collective variables from MD simulations. Specifically, we developed a reduced-order chemical kinetics model with three components and two reactions starting from a 280-dimensional space.
Making workflows and data FAIR. Finally, I will also describe recent developments in nanoHUB, an open cyberinfrastructure for cloud scientific computing, towards making simulation workflows and their data findable, accessible, interoperable, and reusable (FAIR). We introduce Sim2Ls (pronounced sim tools) and the Sim2L Python library that allow developers to create and share end-to-end computational workflows with well-defined and verified inputs and outputs. The Sim2L library makes Sim2Ls, their requirements, and their services discoverable, verifies inputs and outputs, and automatically stores results in a globally accessible simulation cache and results database.

1)Yoo P, Sakano M, Desai S, Islam MM, Liao P, Strachan A. Neural network reactive force field for C, H, N, and O systems. npj Computational Materials. 2021 Jan 22;7(1):1-0.
2)Sakano MN, Hamed A, Kober EM, Grilli N, Hamilton BW, Islam MM, Koslowski M, Strachan A. Unsupervised learning-based multiscale model of thermochemistry in 1, 3, 5-Trinitro-1, 3, 5-triazinane (RDX). The Journal of Physical Chemistry A. 2020 Oct 28;124(44):9141-55.
3)Hunt M, Clark S, Mejia D, Desai S, Strachan A. Sim2Ls: FAIR simulation workflows and data. Plos one. 2022 Mar 10;17(3):e0264492.